
54 The Delphi Magazine Issue 27

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

or write/fax us at The Delphi Magazine

UNC

QI need to store file names and
paths in a database so that

anyone on my network can access
them. The trouble is that the TDi-
rectoryListBox and TFileListBox
only deal in paths with drive letters
in. How do I turn these into UNC
format so that each computer can
access the files regardless of their
drive mappings?

ACheck out the Expand-
UNCFileName function avail-

able in Delphi 2 and 3. This should
do it, however it does leave local
drives with drive letters in, so you
would have to substitute the com-
puter name as appropriate.

Unexpected Disk Space

Q I have recently reconfigured
my machine to merge my

two hard drives into one volume
set (now 3Gb) using the new NT
4.0. Unfortunately when I use
Delphi 2’s DiskFree on this new
drive I get negative results. Is there
any way to retrieve the amount of
free space on a volume set or will I
have to reconfigure my drives back
to disk partitions?

AThe trouble is that DiskFree
has an Integer return type.

The biggest number that an Inte-
ger can represent is 2Gb-1. You can
modify the DiskFree function from
the SysUtils unit to use floating
point numbers instead as shown in
Listing 1 and the problem will go
away.

Calling Into DLLs

QI’ve noticed an undocu-
mented API call in Windows

95 called WNetGetCachedPassword,

it’s in MPR.DLL. How can I drive
this from Delphi?

AYou first need to get some
documentation for it. If you

haven’t got any, you might as well
forget it. Reverse engineering
assembler code to find what the
parameters and return values are
supposed to be is very difficult.

If you have documentation on
the parameter types then you need
to write an import declaration for
it. All the units in the SOURCE\
RTL\WIN directory of all versions
of Delphi except Desktop are
packed full of import declarations
so you can check those out to see
how they are written. Or check any
book that goes into detail about
Delphi DLL programming.

Of course if you just want to get
the network password, then check
the appropriate Delphi Clinic entry
on the subject in Issue 15.

Context Help

QMany 32-bit Windows appli-
cations have the little ques-

tion mark button on the caption
bars of their dialogs to induce
convenient context-sensitive help.
Pushing this changes the cursor to

a question mark (as Delphi does
when a Cursor property is set to
crHelp) and the user can then click
on a control to get help in a nice
little popup window (as opposed
to the full Help application). I want
this functionality, but I also want
minimise and maximise buttons on
my form. It seems I cannot have all
three. What can I do about this?

AYou are right in that the Bor-
derIcons set property of a

form has certain priorities over-
which buttons it will put on the
form (or rather the underlying
Windows implementation does). If
you include biMaximize, biMinimize
and also biHelp, then the help icon
does not show. In fact it will only
show if biMinimize and biMaximize
are both removed. However, you
could add a button onto your form
which has the same functionality
as the caption bar button or border
icon concerned.

All the things on the caption bar
cause wm_SysCommand messages to
be sent to the form. The WParampart
of the message contains the actual
system command to execute. For
example, these two statements
mimic the minimise and maximise
buttons:

function DiskFree(Drive: Byte): Single;
var
RootPath: array[0..4] of Char;
RootPtr: PChar;
SectorsPerCluster, BytesPerSector,
FreeClusters, TotalClusters: Integer;
SPC: Single;

begin
RootPtr := nil;
if Drive > 0 then begin
StrCopy(RootPath, ‘A:\’);
RootPath[0] := Char(Drive + $40);
RootPtr := RootPath;

end;
if GetDiskFreeSpace(RootPtr, SectorsPerCluster, BytesPerSector,
FreeClusters, TotalClusters) then begin
SPC := SectorsPerCluster;
Result := SPC * BytesPerSector * FreeClusters

end else
Result := -1;

end;

➤ Listing 1

56 The Delphi Magazine Issue 27

Perform(wm_SysCommand,
sc_Minimize, 0);
//sc_Minimize replaces sc_Icon

Perform(wm_SysCommand,
sc_Maximize, 0);
//sc_Maximize replaces sc_Zoom

This assumes these are called in
the scope of the form, like in an
event handler. Perform is a method
of any control and in this case I am
calling the form’s Perform method.

You can send sc_Close to a form
to close it (although you never
would because calling the Close
method works just fine). Things get
a bit more interesting with sc_Size
and sc_Move so it’s worth moving
off on a slight tangent for a while
before coming back to the question
proper.

The Windows API help says that
if you trap for wm_SysCommand you
should perform a binary and
operation between the WParam and
$FFF0 and check whether the result
matches the code you want to trap.
The reason for this is that each of
the codes themselves have their

lowest four bits clear so that
additional information can be
passed along if necessary in these
spare bits. sc_Move and sc_Size
take advantage of this potential
extra information.

If you send a normal sc_Move
code to a form (or indeed to any
control for that matter), the cursor
changes to the shape you get if you
choose Move from the system
menu. This allows keyboard
actions to move the form (or con-
trol) around. However if you send
sc_Move+1 you get the same effect
as when you click on the caption

bar of a form and drag it with the
mouse. In other words, when you
send this new command any fur-
ther mouse movements move the
target window until you do some-
thing with the mouse button (like
click it).

Similarly when you send sc_Size
it allows the cursor keys to resize
the item. However eight of the
values that follow sc_Size allow the
mouse to resize the window. They
mimic the various sections of the
form border that you drag to resize
the form in the various ways.
Listing 2 defines a set of new
constants that represent these
new valid system codes. It’s the
ones that start sc_Size... that can
be used for sizing. So Per-
form(wm_SysCommand, sc_SizeBot-
tomRight, 0) matches what
happens when you drag the
bottom-right hand portion of a
form’s border.

Getting back to the plot with
respect to the context help button,
you can call

Perform(wm_SysCommand,
sc_ContextHelp, 0)

in a button’s OnClick handler to do
the same as the help icon would. Or
almost the same. The difference is
that the help comes up in the full
WinHelp application. To get the
proper effect make sure you
include biHelp in the form’s Bor-
derIcons property. Windows will
then invoke the help in the pleas-
ant little popup when you send the
message.

Figure 1 shows an application
(SysCmd.Dpr) which has bor-
rowed Notepad’s help file. Some of
Notepad’s context numbers have
been given to the controls on the

const
sc_DragMove = sc_Move + 1;
sc_Left = 1;
sc_Right = 2;
sc_Top = 3;
sc_Bottom = 6;
sc_SizeKeys = sc_Size + 0;
sc_SizeLeft = sc_Size + sc_Left;
sc_SizeRight = sc_Size + sc_Right;
sc_SizeTop = sc_Size + sc_Top;
sc_SizeBottom = sc_Size + sc_Bottom;
sc_SizeTopLeft = sc_SizeTop + sc_Left;
sc_SizeTopRight = sc_SizeTop + sc_Right;
sc_SizeBottomLeft = sc_SizeBottom + sc_Left;
sc_SizeBottomRight = sc_SizeBottom + sc_Right;

➤ Listing 2

const Delta = 5;
function GetSizeCommand(X, Y: Integer; Control: TWinControl): Cardinal;
begin
Result := sc_Size;
if X > Control.ClientWidth - Delta then
Inc(Result, sc_Right)

else if X < Delta then
Inc(Result, sc_Left);

if Y > Control.ClientHeight - Delta then
Inc(Result, sc_Bottom)

else if Y < Delta then
Inc(Result, sc_Top)

end;
procedure TForm1.Edit1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

var SystemCode: Cardinal;
begin
with Sender as TWinControl do
if ChkDesign.Checked and (ssCtrl in Shift) then begin
SystemCode := GetSizeCommand(X, Y, TWinControl(Sender));
if SystemCode <> sc_Size then begin
{ Do fake mouse button release, since the control won’t notice the
real one due to its resizing }

Perform(wm_LButtonUp, X, Y);
Perform(wm_SysCommand, SystemCode, 0);

end
end else begin
ReleaseCapture;
Perform(wm_SysCommand, sc_DragMove, 0);

end;
end;
procedure TForm1.Edit1MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

var NewCursor: TCursor;
begin
NewCursor := crDefault;
with Sender as TWinControl do begin
if ChkDesign.Checked and (ssCtrl in Shift) then
case GetSizeCommand(X, Y, Sender as TWinControl) of
sc_SizeTop, sc_SizeBottom: NewCursor := crSizeNS;
sc_SizeLeft, sc_SizeRight: NewCursor := crSizeWE;
sc_SizeTopLeft, sc_SizeBottomRight: NewCursor := crSizeNWSE;
sc_SizeTopRight, sc_SizeBottomLeft: NewCursor := crSizeNESW;

end;
Cursor := NewCursor

end
end;

➤ Listing 3

November 1997 The Delphi Magazine 57

form via their HelpContext proper-
ties. Additionally, SysCmd.Dpr
shows how sc_Move and sc_Size
and their variations can be used.
You can drag the edit control on
the form around by standard
click-and-drag operations. Ctrl-
click-and-drag allows the edit con-
trol to be resized. To suggest that
resizing is available inside the
perimeter of the edit control, the
cursor is changed in much the
same way as it is when over a
normal form’s border. The code for
this is a bit clunky, see Listing 3.

Incidentally, a note for the
unwary regarding help files. When
you use the Help file: option on
the Application page of the Project
Options dialog, the net effect is that
an assignment to Applica-
tion.Helpfile is inserted into the
project source file. The trouble is
that when you browse for a help
file, a fully qualified path is used in
the assignment. This is not usually
a good idea. And it is not necessar-
ily required in a Win32 application.
Win32 keeps a record of all the help
files that are used and stores the
path of where they can be found in
the registry. This is in fact why you
get help file problems with Delphi 2
and 3 on the same machine. They
have the same help file names, but
in different directories. The regis-
try stores only one entry per help
file name.

Anyway, during your appli-
cation’s installation you could add
the path of the help file into the
registry under

HKEY_LOCAL_MACHINE\Software\
Microsoft\Windows\Help

and you can then omit the path
information from the Applica-
tion.HelpFile assignment.

Table Names

QI am using an MS Access da-
tabase in my project

(ODBC). The user can create and
view tables and so I need to pro-
vide a drop down list of the tables
in the MS Access database. How-
ever I cannot see any way of listing
the names of the tables, how do I
find the table names. I guess it can
be done because the property
editor of TTable can do it.

AIndeed. You need to use
methods of your database

application’s Session object to
achieve this. Listing 4 shows some
event handlers from Tables.Dpr
that do the business (see Figure 2).

Forms Compiled Into Exes

QI know I can use CONVERT.EXE

or the ObjectResourceToText
procedure to translate DFM files
into text. But can I examine the
forms that have been compiled
into executable files?

AWell this must verge on re-
verse engineering, but yes

you can. DFM files are linked in as
custom resource files and so re-
side at the end of the executable
file with all the other resources.
They are stored as RCData, along
with other custom resource data
which may well not be forms.

➤ Above left: Figure 1
➤ Above right: Figure 2

procedure TForm1.FormCreate(Sender: TObject);
begin
Session.GetAliasNames(cmbAlias.Items);

end;
procedure TForm1.cmbAliasChange(Sender: TObject);
begin
Session.GetTableNames(cmbAlias.Text, '*.*', False, False, cmbTable.Items)

end;
procedure TForm1.cmbTableChange(Sender: TObject);
begin
Table1.DisableControls;
try
Table1.Close;
Table1.DatabaseName := cmbAlias.Text;
Table1.TableName := cmbTable.Text;
Table1.Open

finally
Table1.EnableControls

end
end;

➤ Listing 4

58 The Delphi Magazine Issue 27

What you need is some code set
up to access resources, and then
continue to use ObjectResourceTo-
Text on the located data. Fortu-
nately (if you are using Delphi 2 or
3) you do have such code in the
form of a demo application. The
RESXPLOR demo is a good exam-
ple of a program that pulls a Win32
EXE or DLL to bits.

To modify it to show textual ver-
sions of the forms therein, load the

➤ Figure 3

...
rtString, rtMenu:
begin
StringViewer.Lines.Assign(R);
StringViewer.SelStart := 0;
Notebook.PageIndex := 2;

end;
{beginning of new code}
rtRCData:
begin
TextStream := TMemoryStream.Create;
BinaryStream := TMemoryStream.Create;
try
R.SaveToStream(BinaryStream);
BinaryStream.Position := 0;
try
ObjectBinaryToText(BinaryStream, TextStream);
FormText.Lines.Clear;
TextStream.Position := 0;
FormText.Lines.LoadFromStream(TextStream);
Notebook.PageIndex := 4;

except
R := TResourceItem(Selected.Data);
HexDump.Address := R.RawData;
HexDump.DataSize := R.Size;
Notebook.PageIndex := 3;

end
finally
TextStream.Free;
BinaryStream.Free

end
end;

{end of new code }
else begin
HexDump.Address := R.RawData;
HexDump.DataSize := R.Size;
Notebook.PageIndex := 3;

end;
end;
...

➤ Listing 5

project from the Delphi’s
DEMOS\RESXPLOR directory and
find the implementation of the
UpdateViewPanel method of the
main form. Declare two new local
variables as follows:

BinaryStream, TextStream:
TMemoryStream;

Then in the case statement, add a
new choice in, just before the else

part. Listing 5 shows how the code
gets inserted. The job is now done.
Run the program, load up a Delphi
EXE and look at the RCData section.
Any items which represent forms
can now be viewed at leisure.
Figure 3 shows the Resource
Explorer examining its own EXE,
looking at its main form. This modi-
fied Resource Explorer was used
to aid in the development of
Archaeopteryx (see my article in
this issue).

DLL Imports

QI’ve been examining my
Delphi applications with

QuickView (supplied with Win-
dows 95). Why do Delphi apps
have a garbled import table in
QuickView, whereas those pro-
duced by other tools seem fine?

AThis seems to be a problem
with QuickView. All Delphi

binaries seem to cause QuickView
a problem (Figure 4), but they
clearly work ok at run-time (which
implies Windows can read the im-
port table correctly). A different
tool such as TDump accurately re-
flects that delphimm.dll (shown in
Figure 4 in QuickView) imports
things from kernel32.dll, us-
er32.dll, advapi32.dll, oleaut32.dll,
and moreover lists which func-
tions are imported from the DLLs
(QuickView can usually manage
this but not with Delphi binaries).

➤ Figure 4

	UNC
	Unexpected Disk Space
	Calling Into DLLs
	Context Help
	Table Names
	Forms Compiled Into Exes
	DLL Imports

